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Roll waves on a shallow layer of mud modelled as 
a power-law fluid 
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We give a theory of permanent roll waves on a shallow layer of fluid mud which is 
modelled as a power-law fluid. Based on the long-wave approximation, Karman’s 
momentum integral method is applied to derive the averaged continuity and the 
momentum equations. Linearized instability analysis of a uniform flow shows that the 
growth rate of unstable disturbances increases monotonically with the wavenumber, 
and therefore is insufficient to suggest a preferred wavelength for the roll wave. 
Nonlinear roll waves are obtained next as periodic shocks connected by smooth 
profiles with depth increasing monotonically from the rear to the front. Among all 
wavelengths only those longer than a certain threshold correspond to positive energy 
loss across the shock, and are physically acceptable. This threshold also implies a 
minimum discharge, viewed in the moving system, for the roll wave to exist. These facts 
suggest that a roll wave developed spontaneously from infinitesimal disturbances 
should have the shortest wavelength corresponding to zero dissipation across the 
shock, though finite dissipation elsewhere. The discontinuity at the wave front is a 
mathematical shortcoming needing a local requirement. Predictions for the spon- 
taneously developed roll waves in a Newtonian case are compared with available 
experimental data. Longer roll waves, with dissipation at the discontinuous fronts, 
cannot be maintained if the uniform flow is linearly stable, when the fluid is slightly 
non-Newtonian. However, when the fluid is highly non-Newtonian, very long roll 
waves may still exist even if the corresponding uniform flow is stable to infinitesimal 
disturbances. Numerical results are presented for the phase speed, wave height and 
wavenumber, and wave profiles for a representative value of the flow index of fluid 
mud. 

1. Introduction 
It has been known for a long time that a steady discharge of water into a long open 

channel frequently develops into a series of progressing bores (Cornish 1934). These 
bores are sandwiched between long stretches of gentle profiles increasing monotonically 
in depth from rear to front. The wave system is called roll waves. 

In muddy rivers intermittent flows of clay/water mixture are also frequent, especially 
after torrential rain. Mud flows resulting from volcano eruptions can also be 
accompanied by intermittent waves. Observations of these waves have been reported 
for Wrightwood in California (Sharp & Nobles 1953; Johnson 1970), Mt Thomas in 
New Zealand (Pierson 1980), Mt Yakedake in Japan (Okuda et al. 1980), Jiang-jia 
Ravine in Southwest China (Li et al. 1983) and tributaries of Yellow River in China 
(Wan, 1982). In Jiang-jia Ravine which is a gully about 20-25 m in width, the mud flow 
surges down during the wet season in groups of successive bores. The maximum wave 
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FIGURE 1 .  Fitting of the power-law model to the rheological data measured by Wan (1982) for 
kaolinite suspension. 

height once reached 4 m and the maximum wave velocity 13 m s-l, while the discharge 
per wave was as much as 2420 m3 s-'. The wavelength varied between 20 and 100 m, 
while the period of each wave ranged from 5 to 60 s. The bore fronts splattered with 
so much force that even large stones were thrown into the air. The flow in the rear of 
the waves was however much shallower, slower and essentially laminar, and frequently 
stagnant before the next surge. Such intermittent mud flows are responsible for the 
severe erosion and deposition of bed materials in Jiang-jia Ravine. 

Theoretically roll waves were first analysed for clear water in open channels by 
Jeffreys (1925) as a problem of linearized instability of a steady turbulent current. The 
mathematical theory for roll waves of finite amplitude was later given by Dressler 
(1949) who fitted shocks between periodic stretches of smooth profiles. In Dressler's 
theory, given the values of the slope and the roughness, one must also specify the wave 
speed and length, in order to determine all other flow characteristics such as shock 
amplitude and flow velocity and depth. He also showed the existence of a critical 
section where both the numerator and the denominator of the profile equation vanish. 
In addition, Dressler found that roll waves will occur only if the bottom roughness of 
the channel is non-zero and less than a certain critical value, as required by the 
instability criterion for a linearized disturbance. 

Dressler's theory of roll waves was extended to laminar water flows by Ishihara, 
Iwagaki & Iwasa (1954), who also carried out experiments in a thin sheet of water. 
Tamada & Tougou (1979) studied the linearized instability of the nonlinear laminar 
roll waves of Ishihara et al., and solved numerically an eigenvalue problem. To 
determine the roll wavelength, they searched for the length of the 'most stable' wave 
which corresponds to the eigenvalue with the fastest decay rate. Their mathematical 
procedure was however not sufficiently clear to be convincing. Experiments on laminar 
roll waves have also been conducted in an open channel by Mayer (1959), with 
particular emphasis on the initial development of roll waves near the entrance of a long 
channel. Similar experiments have been performed more recently by Julien & Hartley 
(1985, 1986). Again attention was focused on the formation length of roll waves on an 
incline. Linear and nonlinear waves of continuous profile on a Newtonian thin film 
with strong surface tension is a much studied subject; for recent developments and the 
extensive bibliography, reference should be made to Needham & Merkin (1984), 
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Alekseenko, Nakoryakov & Pokusaev (1985), Merkin & Needham (1986), Hwang & 
Chang (1987), Needham (1988, 1990), Prokopiou, Cheng & Chang (1991), Chang, 
Demekhin & Kopelevich (1993) and Liu, Paul & Gollub (1993). 

Without or without bores, intermittent mud or debris flows can be laminar except 
near the bore front because of the high viscosity (Johnson 1970; Davies 1986). The 
problem of roll waves in laminar flow of non-Newtonian fluids has only been studied 
by Liu (1990) who examined the rapid flow of Bingham-plastic fluids down an incline. 
Under certain conditions, the growth rate of unstable wave may have a maximum for 
a certain wavelength. Taking the most unstable infinitesimal progressive wave as the 
initial disturbance, Liu calculated numerically the transient development into periodic 
shocks in a thin layer of Bingham-plastic mud flow. 

The Bingham model is however a mathematical idealization. At low shearing rates 
(5-50 s-l), the rheological character of thick fluid mud is known to be shear thinning 
(e.g. see Wan 1982; Kajiuchi & Saito 1984; O'Brien & Julien 1988). It is also known 
that in the field the shearing rate is often less than 100 s-l (Qian &Wan 1986; Johnson 
1970; Yano & Daido 1985). In a transient theory the Bingham model also poses 
difficulties because of the presence of the yield surface along which the shear stress 
equals the yield stress. The position of the yield surface is not known a priovi and has 
to be solved as a part of the transient nonlinear problem. 

At low shear rates, a more appropriate and convenient model is the power law which 
reads, in simple shear, 

au 

where p, is the viscosity coefficient of dimension [ML-1T"-2], and n is the flow index 
which is between 0 and 1 for a shear-thinning fluid. The special limit of n = 1 
corresponds to a Newtonian fluid, and p1 is the ordinary dynamic viscosity. In figure 
1, we show how the power-law model fits the measured relation between the shear 
stress and the strain rate data for a kaolinite suspension measured by Wan (1982). For 
these data, the parameters pCLn and n may be expressed in terms of the volume 
concentration C, by 

pn = 1.86 x 10-4C:.45, 
n = 5.86C;1.34, (1.3) 

where p, is in dynes cm-2 sn, and C, is a percentage. It can be seen that pn increases 
while n decreases with the volume concentration. A similar trend of change of the 
power-law parameters with the volume concentration is also reported by Dai et al. 
(1980) and Darby (1986). Figure 2 has been compiled to give the empirical relation 
between n and the volume concentration from the following sources : Wan (1982) for 
kaolinite suspension; Bryant & Williams (1980) for Brisbane mud and Rotterdam 
mud; Darby (1986) for pulverized lignite suspension in saline water; Dai et al. (1980) 
for slurry mud; and Tanner (1985) for cement rocks in water. The fact that the data 
points are scattered suggests that other factors such as chemical composition and 
particle sizes may also be influential. In any case it may be noted that for the same type 
of solid content, n decreases as the concentration increases. The data points lie in the 
range 0.1 < n < 0.4 for volume concentrations below 60 YO. 

For the flow to remain laminar, it is necessary that the Reynolds number be below 
certain threshold: Re < Re,. For power-law fluids, Darby (1986) gave the following 
empirical relation for circular pipe flows : 

Re(pipe)  < Re,(pipe) = 0.125 2(1 +3n) '[2100+875(1 -n)], [ . I  
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FIGURE 2. Correlation of TI with C, for various solid compositions: 0, kaolinite suspension (Wan 
1982); x ,  Rotterdam mud (Bryant & Williams 1980); +, Brisbane mud (Bryant & Williams 1980); 
a, lignite suspension (Darby 1986); 0, slurry (Dai et al. 1980); V, cement rock in water (Tanner 
1985). 

n 1 .o 0.4 0.1 
c, ("/.I 0 7.4 20.9 
P (kg m-3> 1000 1120 1340 
P, (Pa sn> 0.001 0.14 13.8 

0 = 0.001 rad. 
Re, 525 492 435 

Q, (m2 s-'1 5.3 x 10-4 0.0188 3.0397 
h, (m) 0.0054 0.0512 1.4054 
iic (m s-') 0.0966 0.3679 2.1628 

Q, (mz s-') 5.3 x 10-4 0.0019 0.0588 
h, ( 4  0.0012 0.0024 0.0218 
ii, (m s-l) 0.448 1 0.7924 2.6929 

TABLE 1. Flow parameters for various n, and physical discharge rates, depths and mean velocities 
for two slopes 0 

0 = 0.1 rad. 

where 

while u and D denote the mean velocity and the pipe diameter respectively. As is 
customary in the hydraulics of wide open channels, D is replaced by 4 times the channel 
depth. Therefore (1.4) is rewritten as 

1+3n Re = p'-nhn ___ < Re, = 0.125(x) [2100+875(1 -n)]. 
Pn 

From (1.6), the upper bounds Re, for n = (1.0,0.4,0.1) are respectively Re, = (525, 
492,435). As a numerical example, we compare the uniform flow of a power-law fluid 
mud with clear water of n = 1.0. For the two slopes 0 = 0.001, 0.1 rad., the physical 
discharge rates, depths and mean velocities (with a subscript c) corresponding to the 
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above three upper limits are calculated according to (2.10) and (2.1 1) and presented in 
table 1. 

Note that, at a mild slope, the depth of a Newtonian fluid must be of the order of 
millimeters, while that of the highly non-Newtonian fluid can be 1 m or more, for the 
flow to remain laminar. Taking the example of Jiang-jia Ravine, we cite the following 
data from Li et al. (1983) for one particular mud flow: p = 2130 kg mP3, sin B = 0.06, 
h = 1.40 m, surface velocity u(h) = 8.0 m s-l. Li et al. chose the Bingham model and 
estimated the yield strength of the mud to be 2000-3000 dynes cm-'. Their measured 
Bingham viscosity is in the order of 30 P.7 From these Bingham model parameters, we 
fit a power-law model with: n = 0.3 and ,un = 150 Pasn. Hence the depth-averaged 
velocity ii, which is given by (2.9), equals g u ( h )  = 6.5 m s-l. The Reynolds number 
may now be calculated : 

= 379. pr?2-"hn - 2130 x 6.5l.' x 1.4°.3 Re=-- 
Pn  150 

The corresponding threshold is Re, = 479. The mud flow in Jiang-jia Ravine is 
therefore laminar despite its relatively high velocity. 

In this paper we shall develop a theory for stationary roll waves in laminar flow of 
a power-law fluid layer down an incline. Dissipation is present in the laminar part as 
well as inside the bores where there must be local turbulence. The long-wave 
approximation is invoked first. By a linearized instability analysis, it is shown that the 
growth rate of the unstable waves possesses no maximum with respect to the 
wavenumber. The main part is on the profile of the roll wave presented in 9 5. Energy 
loss rate at the shock is calculated. It is found that the shock amplitude must exceed 
a non-zero threshold in order for the loss to be positive. This threshold corresponds to 
a roll wave with only laminar dissipation, and the shortest wavelength. It is argued that 
these roll waves are the most likely to arise spontaneously from instability. Numerical 
results for these and longer roll waves are discussed. 

2. Long-wave approximation 
Consider a two-dimensional laminar flow of a thin layer of mud down a plane of 

inclination 0 which can be any positive value not greater than 90". An (x, z )  coordinate 
system is defined with the x-axis along and the z-axis normal to the plane bed. The 
longitudinal and transverse velocity components are denoted by u, v(x, z ,  t) ,  the 
pressure by p ( x ,  z ,  t) ,  and the depth normal to the bed by h(x, t). Following long-wave 
expansions, the equations of motion are approximated as follows : 

au a0 -+- = 0, 
ax a Z  

au au au 1 ap 1 arz, 
at ax az Pax P az 
-+u-+v- = ---+gsinB+--, 

0 = ----gcoso, 1 aP 
PaZ 

(2.3) 

t Li et al. also estimated the Bingham viscosity according to the Newtonian theory p = pgsin 
0h2/(2u(h)). Using the total depth for h, they found ,u = 1500 P which is far greater than the measured 
value. The consistent estimate should be based on the depth h, of the sheared zone where the shear 
stress exceeds the yield stress. This implies that h, is approximately equal to 0.1%. 
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where p is the fluid density and g is the gravitational acceleration. The boundary 
conditions are 

u = v = O  at z = O ,  (2.4) 

ah ah 
at ax v=-+u- at z = h ,  

au 
p = O ,  % = O  at z = h .  

Equations (2.3) and (2.6) imply that the pressure is hydrostatic: 

p = pgcos8(h-z). (2.7) 

These approximate equations can be deduced in the usual manner by proper scaling. 
Under the assumptions of long waves and high Reynolds number, (2.1)-(2.7) represent 
the leading-order results in a perturbation analysis. This is sketched in Appendix A. 

Inserting (1.1) and (2.7) into (2.2), the x-momentum equation reads 

ah p, a au n 

ax 1 p az 0 az 
au au au 
-+u-+u-=g sin8-cosO- +-- - . 
a t  ax aZ 

The limiting velocity profile for a steady uniform flow is obtainable from (2.8) 

1+2n-[ u 1- ( 1-- 391 , 
u(z) = ~ 

l + n  

where u is the depth-averaged velocity 

(2.10) 

Profiles of u(z)/ii for n = 1,0.4 and 0.1 are plotted in figure 3 .  The presence of a near- 
plug flow zone for the non-Newtonian case is evident for small n. The steady discharge 
rate per unit width is 

(2.11) 

It is clear that in a steady uniform flow of known fluid properties, any two of the four 
parameters (Q, h, C, 19) define the flow. 

For long waves, variation in the longitudinal direction must be slow; we therefore 
apply Karman’s momentum integral method by assuming that (2.9) is also true for 
u(x, z ,  t )  in a transient and non-uniform flow, but with u and h dependent on x and t. 
In the Newtonian case, (2.9) is a parabolic profile. Integrating (2.1) and (2.8) with 
respect to z from 0 to h and using the Leibniz rule, we get 

(2.12) ah 2 u dz - u(h) - + v(h) - u(0) = 0, 

ah 

ax ax 

u2 dz - U2(h) -+ u(h) u(h) - ~ ( 0 )  ~ ( 0 )  ax 

= g 
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FIGURE 3 .  Velocity profiles for n = 1.0, 0.4 and 0.1 

By the boundary conditions (2.4) and (2.5) and the velocity profile (2.9), we may 
simplify (2.12) and (2.13) to 

h, + ( d ~ ) ~  = 0, (2.14) 

(crh)h), + (Pcrzh + + cos Ogh2)s = sin Ogh - 

where p is the momentum flux factor 

/3 = ( $ h ) - l I  u2 dz = 2( 1 + 2n) 
(2 + 3n) ’ 

(2.15) 

(2.16) 

For shear-thinning fluids, 0 < n d 1 ; the range for p is 
1 <p<g.  (2.17) 

The bottom stress follows by putting (2.9) into (1.1) and setting z = 0 

1+2n a n  
?b = p n [ ( Y ) K ]  . (2.18) 

For Newtonian layers the momentum integral method has been employed before by 
Kapitza (1948), Ishihara et al. (1954), Alekseenko et al. (1985), and Prokopiou et al. 
(1991). It is well known in boundary-layer theory that the momentum integral method 
is a method of moments which may give numerically different but acceptable results for 
the global quantities if different velocity profiles are assumed. Therefore the qualitative 
behaviour of the global result such as the wall stress in the Blasius problem can still be 
crudely predicted (Schlichting 1979). It is reasonable to expect (2.9) to be useful away 
from the shock but not very near the shock where rapid changes in x and z must occur. 

6 F L M  263 
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3. Normalization 
We shall suppose that the spatially averaged discharge rate is known: 

<Q> = A-’/*Q(OdS, 0 

where h is the wavelength. In terms of (Q), a characteristic depth h, and a 
characteristic velocity U, may be defined in the manner of (2.10) and (2.11): 

and 

(3.3) 

so that <Q> = coho. (3.4) 

In Newtonian fluids, (3.2) and (3.3) are known respectively as the Nusselt thickness and 
the Nusselt velocity. 

In terms of h, and go, we further define a characteristic bottom stress according to 
(2.18): 

1+2n is, 
‘b0 = kn [ ( T ) K ]  ’ 

We also introduce a longitudinal lengthscale 

is; I, = v 
g sin 0 

and define normalized quantities (marked with an asterisk) as follows: 

x = I, x*, (h,  2)  = h,(h*, z*), t = 5 t*, 
UO 

U =  U o P ,  Q = (Unho)Q*,  7b = ~ ~ ~ 7 : .  

In dimensionless form, (2.14), (2.15) and (2.18) become 

h,*, + (u””h*),* = 0, 

(@h*),, + (JP2h* + = h* - (;y. - 
+ n  7 ; = ( 3 .  

To arrive at (3.9), use has been made of (3.3) and 

cos %gho a=-------. G 

(3.5) 

(3.6) 

(3.74 

(3.7b) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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Further utilizing (3.3), we may write 

where Re is the Reynolds number of the flow 

159 

(3.12) 

(3.13) 

Note that for a Newtonian fluid, n = 1, Re = pa,, h,,/,ul is the customary Reynolds 
number. Equations (3.8) and (3.9) constitute the basic non-dimensional equations for 
~(x, t)  and h(x, t) ,  with a and yz as the parameters. For a given bed slope 0, the discharge 
((2) and n may be regarded as the basic input; a and Re are derived parameters. From 
here on, unless stated otherwise, we shall use only dimensionless quantities and omit 
the asterisks for simplicity. 

4. Linearized instability of uniform flow 
Let a small perturbation be added to the uniform flow as follows: 

h = 1 + H(x,  t ) ,  = 1 + U(X,  t) ,  (4.1) 

(4.2) (H ,  U )  = R~ (fi, 9 ei(ks-ot) 

where k is the real wavenumber, and w = w,+iwi is complex. By _standard linear 
analysis, an eigenvalue condition for non-trivial solutions of H and U is obtained: 

where H,  U 4 1 .  Consider normal mode disturbances 

w2-(2/3k-in)o-i(l +2n)k+(p-a)k2 = 0, (4.3) 
which can be solved for w :  

w * = pk - i:n f (a + ib);, 
where a = [/@'-1)+a]k2-~n2, 

b=(1+2n-pn)k .  

Since 0 < n < 1, 0 < p ,< 1.2, we must have b > 0 for k 4 0. It follows that a+ib lies 
in the upper complex plane, and the principal value of its square root must be in the 
first quadrant of the complex plane. Therefore 

Obviously w; < 0;  therefore w- corresponds to decay and stability. However w,t is 
negative if and only if 

(4.9) 
which on substituting (4.5) and (4.6) is equivalent to 

{i[ - a + (a2 + b2)i] ji < in, 

(1 +2n-pn)'k2 < n2[P(P- 1)+a]k2.  (4.10) 

It follows that, for k =I= 0, disturbances will die out and the flow will be stable if 

1 +2n a>-- = a,(n) or Re < n (L)'-" cot 8. 
n2 1 +2n 

(4.11) 

6-2 
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FIGURE 4. Growth rate of disturbance ( w t )  as a function of k and GI for n = 0.4. 

For a Newtonian fluid, the above instability criterion becomes 

a > 3 or Re < cot 8. (4.12) 

This has been obtained by Prokopiou et al. (1991) by using the Karman momentum 
integral approximation with the parabolic profile ((2.9) with n = l), also for Re >> 1. 

For low Reynolds numbers, Re = 0(1), and long waves, a rigorous result for the 
instability threshold is known from the solution of the Orr-Sommerfeld equation if the 
fluid is Newtonian (Benjamin 1957; Yih 1963). The result should also hold at high Re 
and serves as a check for the accuracy of the Karman approximation. As shown by 
(B 17), the rigorous threshold for the Newtonian limit occurs at the slightly lower 
Reynolds number Re = $cot 8, recently verified experimentally by Liu et al. (1993). The 
numerical inaccuracy of (4.12) is due to the inaccuracy of the velocity profile associated 
with non-uniformity in the direction of flow, as pointed out already by Prokopiou 
et al. For power-law fluids we have carried out a rigorous instability analysis for 
Re = O(1) and long waves, as given in Appendix B. It is shown that the approximate 
criterion (4.11) approaches the correct one (B 17) as n decreases, i.e. as the fluid 
becomes more shear thinning, suggesting that the Karman approximation used here 
can be more reliable in the nonlinear problems studied here. 

For general k the threshold of instability as@) depends only on n. If a > czs, all 
disturbances with k =+ 0 will be damped. The neutral stability curves are given by the 
two lines k = 0 and a = a,. Figures 4 and 5 display, for n = 0.4, the monotonic 
dependence on k of the amplification rate o: and the phase speed w:/k  for various 
values of a. This monotonic tendency is expected to be altered by surface tension, 
which must be important for large k. For large k, the asymptotic amplification rate is 

+ 
while the phase speed is 

2 o+ - /3+[/3(p-l)+a]a+ 
k 

(4.13) 

(4.14) 

Equation (4.14) has been used by Julien & Hartley (1985, 1986) to compare with the 
measured phase velocity of nonlinear laminar roll waves in water. 
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Note that at the long-wave limit, k - 0, the phase speed is given approximately by 

w: 1+2n 
k n 
---- +... ( k -  0) (4.15) 

which depends on n only. In the Newtonian limit the phase speed is 3, as was also found 
by Prokopiou et al. (1991), and in agreement with the earlier theories for Re = O(1) by 
Benjamin (1957) or Yih (1963). 

5. Permanent roll wave 
5.1. The continuous projile between two shocks 

We consider roll waves in a permanent form moving at a constant speed c. Introducing 
a moving coordinate < given by 

and assuming that u and h are functions of 
6 = x - c t  (5.1) 

h(c-U) = q, (5.2) 

only, (3.8) can be integrated to 

where q is a constant which is the discharge rate as seen by an observer moving at the 
wave speed c. With (5.2), (3.9) gives the profile equation 

dh - h - (ch-' - qh-2)n ( - A(h)) 
d& (/3- 1)C2-/3q2h-2+,h - B(h) ' 
- _  (5.3) 

where for subsequent discussions we denote the numerator and the denominator of 
(5.3) by A(h) and B(h) respectively. In accordance with all the reported observations, 
we seek a surface profile with its depth increasing monotonically towards the front, i.e. 
the slope dh/d[ > 0 always. It follows that A and B must be of the same sign. It can 
be shown that for any 0 < n < 1, the equation 

A(h) = h - ( i - $ r  = 0 (5.4) 

has one positive root when q 6 0 and two or no positive roots when q 3 0. It will be 
shown shortly by energy consideration that q must always be positive and therefore the 
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h 
FIGURE 6. The numerator A(h), and the denominator B(h) of the profile equation as 

functions of h. 

case of one positive root is impossible. Thus only the case of two positive roots is 
relevant to the present study. The two zeros of A(h) will be denoted by ha and he, where 
ha < he, as shown in figure 6. On the other hand, B(h) is monotonic in h with one zero, 
defined by 

(5.5) B(h)=(/3-1)c2--++h Pq2 = O ,  
h2 

as shown also in figure 6. 
Note that A’(h,) < 0, while A’(h,) > 0. In order that the profile is continuous 

between two successive shocks and that dh/d< > 0, it is necessary that B(h) also 
vanishes at h,, which will be called the critical depth. The existence of the critical depth 
within the range (hl, h2) can be theoretically deduced, without assuming dh/d< > 0 in 
advance. This argument and physical discussions are given in Appendix C .  The other 
root ha must lie outside two successive shocks, and is an asymptote of the profile 
extended beyond the period. 

Numerical integration of (5.3) will only give a smooth wave profile h(0 
monotonically increasing with 5. For finite result it is necessary to match this profile 
with two shocks at the ends. 

5.2. The jump conditions and energy loss across a shock 
Referring to figure 7, we define h to be the wavelength of the roll wave; hl, , the depth 
immediately before, after a shock; and (h) the average depth of the roll wave profile. 
By (5.3) we may write 

h = <(h,) - <(h,) = r ’ a d h ,  
h,  A(h) 

(h) = h - l l h d g  = A-lI:%dh. (5.7) 

It is clear that 
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FIGURE 7. Definition sketch of a roll wave profile. 

Note that in general ( h )  $. 1. The average discharge rate (Q) defined by (3.1), together 
with (5.2) and the definition of ( h ) ,  implies another relation: 

1 = c (h ) -q  (5.9) 
since the normalized (Q) is 1 by (3.4) and (3.7b). Though roll waves are not sinusoidal, 
we may still define the wavenumber according to 

k = 21c/h. (5.10) 

The shock conditions are derived from the conservation laws of mass and 

~ [ h ] ;  = [Uh]:, (5.11) 
momentumt in (3.8) and (3.9): 

~[Chl; = [pU2h + i&h2]?, (5.12) 

where [h]: = h, - h,, etc. After eliminating u from (5.12), we get a relation between the 
two depths h, and h,: 

ah, hi +ah; h, + 2(p- 1 )  C2h, h, - 2Pq2 = 0, (5.13) 

which can be solved for h,: 

for a > 0, and h, = Pq2 
(P- 1) C2hl 

(5 .14~)  

(5.146) 

for a = 0 (vertical wall). 
It is well-known that across a hydraulic jump in conventional open channels some 

of the mechanical energy is lost through turbulence to heat. By considering a small 
control volume which just encloses the shock and moves at the same speed c, the rate 
of change of mechanical energy across the jump can be found, in physical quantities, 

E =  [ ~ ( ( ~ ~ ~ ~ + p p c o s N z ) ( u - c ) + p u } d z  1: . (5.15) 

7 In hyperbolic systems these physical laws can often be manipulated so that they are written in 
mathematically different conservation forms. However, the conservation laws appropriate for shock 
conditions must be consistent with the integral conservation laws of the physics in the present case 
(Whitham 1974, p. 41). 
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With the pressure given by (2.7), the integration can be formally carried out for any 
velocity profile : 

E = [ ~ y p U 3 h - ~ ~ p ~ U 2 h - ~ p g c o s 8 ~ h 2 + p g c o s  8Uh2]i, (5.16) 

where y is the energy flux factor 

y = ( ~ ~ h ) - l I  u3 dz. (5.17) 

Making use of (5.2) and (5.13), we obtain a normalized relation 

If the velocity profile were to be uniform, the flux factors ,4 and y would be equal to 
unity, then 

(5.19) 

Thus for uniform profiles, E* is negative as long as h,* > h: and q* > 0, and E* = 0 
only when hT = A,*. However, it is physically unrealistic and inconsistent to use a 
uniform profile near the shock in a laminar flow.? For any non-uniform profile in 
general, the two flux factors are different and (5.19) is no longer true. For general 
profiles, if the flux factors satisfy 

/3 > 1 ,  y-/3 > 0 and 2yP-3y+P > 0 (5.20) 

a necessary condition for E < 0 is 

where we have dropped the asterisks. In particular for the assumed profile (2.9), /3 is 
given by (2.16) and 

6(1+2n)' 
= (2+3n)(3+4n)' 

(5.22) 

It can easily be proved that the conditions (5.20) are satisfied. Substituting y and P into 
(5.21), we get 

3(1+2n) (hZ-hl)' +- 2n 3(1+2n)n c2 u +h }-'. (5.23) { 4(3 + 4n) a h, h, 3 + 4n as2(2 + 3n) (3  + 4n) h, h, 
t For roll waves in a Newtonian layer, Ishihara et al. (1954) assumed a parabolic profile away from 

the shock but uniform profiles near the shock. This is of course inconsistent. 
1 
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Thus for laminar flow there is a minimum discharge in the moving coordinate system 
below which stationary roll waves cannot be maintained. Since q must also be positive, 
it follows from (5.2) that the shock speed c must be greater than the speed of the fluid 
particles. At the lower limit q = q,, E = 0, i.e. there is no loss of energy across the shock 
but the shock amplitude is finite. In principle an exact theory involving derivatives of 
all orders and surface tension is needed near the shock, so that shocks are only 
approximations to steep and continuous fronts. 

5.3. Procedure of numerical solution 
In principle we may specify three parameters: n, a, A (or k )  in order to solve for the 
other variables: c, q, h,, ( h ) ,  h,, h, from equations (5.6), (5.7), (5.9), (5.14), (5.4) and 
(5.5). To generate results for all possible A, it is more convenient to specify h, and find 
h instead. After completing the solution, the rate of energy dissipation across the shock 
is calculated according to (5.18) in order to rule out physically unacceptable solutions. 
The numerical procedure is as follows: 

(i) for given n, a,  choose h,; 
(ii) solve for q and c from (5.4) and (5.5) 

(5.24) 

c = hF+gh,'; (5.25) 

a(l+zn) 
q = (p- l)h?+[[p@- l)h, +ah:]$, 

l+n  

(iii) find ( h )  from (5.9) 

(5.26) 1 +q ( h )  = 7; 

(iv) find A, h, and h, from (5.6), (5.7) and (5.14): 

where 

(5.27) 

(5.28) 

5.4. Admissible range of 01 

The energy condition (5.21) contains h, and h, which are not known until the last step 
of the solution process, and therefore in general gives no clue in advance about the 
acceptable ranges of the parameters. We now explore two conditions with a view to 
forecasting, for a given n,  the admissible range of a and the corresponding range of h,. 

Recall first that A'(h,) > 0. By differentiating A(h), we get 

1 +nhy[hF-qh;3]  > 0 
which can be simplified as 

(- ,)hy> l + n  q. 

(5.29) 

(5.30) 

By inserting the relation (5.24) between q and h, we obtain the first condition for ct: 

(5.31) 

We prove in Appendix D that ha, ( h ) ,  1, and h, are in general1 all different, and 
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@) 

FIGURE 8. The functions F(hJ and G(h,): (a) n 2 l / d 2 ,  (b) n < l/d2; F(hJ = a CorrespoIlds to a 
solitary bore. 

h = 1 must always lie between ( h )  and h,. From figure 6, it is evident that, since 

< O  if h,> 1; 
4 1 )  { > 0 if h, < 1 .  

ha < 1 ,  

Since A(1) = 1 -(e-q)% we have 

> l + q  if h,> 1 ;  
c {  < l + q  if h,< 1. 

Because of (5.25), both inequalities imply 
1+2n 

h F - h ,  
h,- 1 > 4,  

With the help of (5.24), (5.32) can be written as 

(5.32) 

(5.33) 

Squaring both sides of (5.33), we finally obtain a second condition for a :  

The two functions F(h,) and G(h,) are plotted in figure 8. We emphasize that (5.31) and 
(5.34) are necessary, but not sufficient, conditions for the existence of an acceptable roll 
wave solution. All final results must still be scrutinized by the energy condition (5.21). 

Let us examine the properties of these functions and their implications: 
(i) For all n, G(h,) is a monotonically increasing function of h,. 
(ii) At h, = 1, F and G are equal: 

1 +2n 
n2 G( 1) = F( 1) = - = a,(n), (5.35) 

which is the stability limit of infinitesimal disturbances on a uniform flow of depth 1. 
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(iii) F(h,) is a monotonically decreasing function when 1 > n 3 l j . t .2  (figure 8u),  
i.e. for a slightly non-Newtonian fluid. However, for 0 < n < 1 / 2 / 2 ,  i.e. highly non- 
Newtonian fluid, the curve exhibits two extrema and concaves upward for h, < 1 but 
downward for h, > 1 (figure 8b). The critical value YE = 1/\/2 is obtained by equating 
F’(h,) at h, = 1 to zero, 

( 2 2 -  1)(1+2n)(2+n) 
lim F’(h,) = - = 0. 
h,+l n3(2 + 3n) (5.36) 

Now we separate two cases: h, > 1 and h, < 1. 
(iv) For h, > 1, G(h,) > F(h,) for all values of YE. 
(v) According to (5.31) and (5.34), a solution exists for an h, only if GL is less than 

both F(h,) and G(h,), i.e. under the curves OPR and OPQR respectively in figures 8 (a)  
and 8(b). Note that for n 3 1 / 2 / 2  no roll wave will exist if a > a,, i.e. if the uniform 
flow is stable to infinitesimal disturbances. However for n < 1 / 2 / 2 ,  the local maximum 
of F(hJ (Q in figure 8 b) which can be found numerically, is greater than a,. This implies 
that for n < 1 / 4 2 ,  there exists roll wave solution even then the corresponding uniform 
flow is stable! This contrasts sharply with the result of Dressler & Pohlc (1953) who 
found that, in clear water open-channel flows, no roll wave solutions exist when the 
uniform flow is linearly stable. 

(iv) When G(h,) = a and h, < 1 (on OP in figure Sa, b), we have A’(h,) = 0, which 
implies h, = h,. Since h, must be between h, and h,, the case corresponds to the limit 
that h,, ( h ) ,  h,, h,, and ha collapse to one value which is less than unity. Obviously this 
is physically impossible and therefore no solutions will exist along OP. 

(vii) When h, = 1 and a < a, (on PI in figure 8a,  b), we have ( h )  = h, = 1. This 
case can be studied by perturbing h, to 1 + E  where E 4 1 .  Though the details are 
omitted here, the analysis indicates that as E --f 0, the two depths hz,  --f 1 f O(6) where 
O(E) < 6 4 1. Therefore the wave height is of order 6 which is very small. Putting these 
limiting values into the energy relation (5.21), we find that as h,+ 1 

n 
3+4n E+ O(6) - [ - q{2a + & Z j  + 3ac + ;ppc”]. (5.37) 

Using the limiting values of q and c given by (5.24) and (5.25) 

q --f p- 1 + [p(p- 1) +a];, 
c-t 1 +q, 

and the maximum a being (1 + 2n)/n2,  we can prove that the terms inside the square 
brackets in (5.37) always end up with a positive sum. Therefore, when the computed 
wave height is small compared with the mean flow depth, the energy requirement is 
always violated and no physical roll waves will exist. 

(viii) When F(hc) = a and h, > 1 (on PR in figure 8 a  or PQR in figure Sb), we have 
A(1) = 0 which implies h, = 1 (since A(h) = 0 has only two positive roots and now 
h, > 1). As h = 1 is always a section in a profile and ( h )  is now less than 1 in accordance 
with (D 3),  we must conclude that 

h,+h,+(h)+ I < h, < h,. (5.38) 

Because of (5.6), the wave must be infinitely long ( A  = a), and may be called a solitary 
roll wave. Furthermore for n < 1 / 4 2  and am,, > a > a,, there are two h, values 
satisfying F(h,) = a and therefore two solitary waves are possible. Variations of a,,, 
and a, with n are shown in figure 9. 



168 C.-0. Ng and C. C. Mei 

0 0.2 0.4 0.6 0.8 1 .o 
n 

FIGURE 9. Relation of a,,, with n. 

6. Numerical results 
As a basis for comparison, the Newtonian case N = 1 .O is examined first and checked 

against experiments. Two non-Newtonian fluids with n = 0.4 and 0.1 have been 
studied; the results for n = 0.4 are representative and will be discussed. 

6.1. A Newtonian layer 
When n = 1, the maximum allowable a,(l) is 3 .  Computations have been carried out 
for a = 0, 0.25, 0.5, and 1, all less than a, = 3 .  In figure 10, solid lines represent the 
dimensionless wave speed c us. the dimensionless wavenumber k. Also plotted as the 
long-dashed line is the threshold q = q, corresponding to zero energy dissipation across 
the shock. Roll waves exist only when k < k,  and when c > c, where k, and c, are the 
corresponding thresholds. For larger a, k, is smaller but c, is greater. In figure 11, we 
show the dependence of the dimensionless wave height H = h, - h, on the dimensionless 
wavenumber k .  Again, the thresholds are joined by a dashed line. For all values, the 
threshold H, is the minimum possible wave height and is smaller for larger a. 

In figure 10, we also show as short dashes the dispersion relation between c and k 
for an infinitesimal wave according to the linearized theory (4.4). Clearly the linear and 
nonlinear theories are closest for the higher range k ,< k,  where the roll wave height H ,  
is smallest. For smaller k,  the departure is more pronounced, showing the inadequacy 
of linearization. At the limit k = 0, curves of the linearized theory converge to c = 3 ,  
which can be calculated from (4.16), while those of the roll waves rise up drastically to 
much higher values of c. For clarity these limiting values of c for solitary roll waves are 
plotted against CL in the smaller graph inserted in figure 10. Similarly, H also increases 
sharply at  the limit k = 0, as shown in the insert to figure 11. Note that for a given a, 
the solitary roll wave has the greatest c and H. 

Recall from the linearized theory that the growth rate of unstable infinitesimal 
disturbances increases monotonically with k (figure 4). Thus the shorter the 
disturbance, the more likely it will reach the nonlinear state of roll waves. However, 
there is no finite wavenumber which has the largest growth rate; therefore, the linear 
analysis alone is insufficient to forecast the likely wavelength of the nonlinear roll 
waves. On the other hand, nonlinear roll waves can exist only when k is below the 
threshold k,, otherwise the results would imply energy gain across the shock and be 
unphysical. We now propose that roll waves generated spontaneously from linearized 
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FIGURE 10. c as a function of k and a for n = 1.0: -, roll wave theory; -- 
_-_- , linear theory. (Insert: c us. a for k = 0.) 
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FIGURE 11. H as a function of k and a for n = 1.0. (Insert: H us. a for k = 0.) 

disturbances should have the fastest initial growth and at the same time satisfy the 
nonlinear constraint that energy is not created across a shock. To meet both 
requirements the preferred wavenumber of such a roll wave is simply k,, corresponding 
to the shortest wavelength A, = 2n/k,, the smallest wave speed c, and height H,, and 
no energy loss at the jump. We shall call this the minimum roll wave. This criterion is 
not far from that of Kapitza (1948) who suggested that the wave with the smallest mean 
energy (averaged over the wavelength) is the observed one. At the shock, the gradient 
is of course too large so that the long-wave approximation must require local 
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FIGURE 12. Comparison of the minimum roll wave c us. a for n = 1.0 (-) with experimental 

data from Julien & Hartley (1985), 0. 

improvement, such as higher orders and surface tension. Indeed some of Kapitza’s 
photographs have shown a sequence of step fronts with weakly rippled tails, which may 
be regarded as the more accurate picture of roll waves described here. (See Prokopiou 
et al. 1991 for theory of these waves and Liu et al. 1993 for further experiments.) 

Roll waves of longer wavelengths, corresponding to positive dissipation across the 
shock can still be generated, of course, by imposing initial or boundary conditions, for 
example by periodically varying the influx rate at far upstream at different periods 
where infinitesimal disturbances are unstable. 

Experiments on roll waves on a thin laminar layer of water have been reported by 
Ishihara et al. (1954), Mayer (1959), and Julien & Hartley (1985). Ishihara et al. (1954) 
carried out tests in a channel 6 m long, 0.2 m wide and maximum slope sin 6’ = 0.2. The 
range of Re is 50-500, and the water depths are from 1 to several millimeters. They 
observed no roll waves when a >  1.2. The profiles of the laminar wave front was not 
steep but was smooth and with a round crest. Mayer (1959) conducted tests in a 
channel 8 m long and 0.5 m wide. Laminar roll waves were observed for 80 < Re < 420 
and at a channel slope between 0.035 and 0.088. Near the upstream end the incipient 
roll waves were formed after the surface irregularities had coalesced and become ridges 
which then tended to steepen in the front and flatten at the back. Further downstream 
the roll wave would continue to grow in height, speed and wavelength. Mayer however 
did not present any numerical data relating the wavelengths with Re or the speeds. He 
noticed that only those waves with a short formation length would attain a terminal 
status before exiting the channel. 

The most comprehensive report for spontaneously developed roll waves in laminar 
flow of water is by Julien & Hartley (1985) who used a relatively long channel of 9.75 m 
in length and 0.21 m in width. They determined the wave period by counting the 
number of waves over a time interval at the downstream exit. The wave velocity was 
determined by taking the time intervals of several wave crests to travel a distance of 
1.52 m and then averaging the results. The range of Re is between 65 and 550 and the 
slope between 0.015 and 0.04, the water depths were in the order of millimeters. A 
numerical summary of the wave velocity, period, the slope and Re was given. 

In all these experiments on roll wave on laminar films, details of the wave front have 
never been fully and consistently described. Surface tension may contribute to the 
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FIGURE 13. Comparison of the minimum roll wave k us. c for IZ = 1.0 (-) with experimental 
data from Julien & Hartley (1985), 0. 
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FIGURE 14. c as a function of k and a for n = 0.4: -, roll wave theory; ---, q = 4, ;  
_____ , linear theory. (Left insert: enlarged plot for small k ;  right insert: c us. a for k = 0.) 

roundedness at the wave front. With these reservations we compare our minimum roll 
wave theory with the measurements of Julien & Hartley in figure 12 for a: us. c, and 
figure 13 for the dispersion curve c us. k .  All data points scatter around the theoretical 
curves for minimum roll waves, suggesting that the combination of criteria based on 
linearized instability and energy consideration is a reasonable approach for determining 
the wavelength of roll waves developed spontaneously from unstable infinitesimal 
waves. 

We only present results for n = 0.4 < 1 / 4 2 .  The upper limit of stability for linearized 
disturbances is a:, = 11.25 while the maximum allowable a:, a:,az, for the existence of 
roll waves is 32 (figure 9). In figures 14 and 15, we plot c and H against k respectively, 

6.2. Non- New ton ian roll waves 
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FIGURE 15. H as a function of k and a for n = 0.4. (Left insert: enlarged plot for small k ;  
right insert: H us. a for k = 0.) 

with a = 0, 0.25, 0.5, 1, 2, 11.25, 15 and 20. The basic features of the two graphs 
resemble their counterparts in the Newtonian case. A dashed line is drawn in each plot 
to indicate the threshold q = qc;  solutions to the right of the threshold have been 
discarded by the energy criterion (5.21). Results of the linearized theory are also shown 
in figure 14 for comparison to the roll wave solutions. For small enough k the height 
H of the roll wave increases and the speeds given by the two theories diverge. The 
speeds and the heights of the infinitely long, or solitary, roll waves are shown in the 
insert. The solitary roll waves here have rather high speeds and heights. For such large 
amplitudes, the local Reynolds number near the wave crest is greater than the limiting 
Reynolds number for laminar flow; the calculated results for this case are therefore 
unreliable. For example, when a = 0.25, the solitary wave has the normalized h, = 8.7 
and G2 = 58.9. If the slope 8 = 0.1 rad. the Reynolds number of the uniform flow is, by 
(3.12), 73. Then by (3.13) the local Reynolds number at the crest is 

58.91.6 x 8.7°.4 x 73 = 0(1 x lo5) 

which must be in the turbulent regime, as the upper bound for a laminar flow of 
n = 0.4 is only R, = 492 ($3). 

An interesting difference between the non-Newtonian and Newtonian theories is the 
existence of roll waves when a is equal to or greater than a,, which is the upper limit 
of instability, provided that n < 1/2/2. Recall that according to the linearized theory, 
all infinitesimal waves are damped out if a >  a,. These solutions can be double-valued, 
as suggested by figure 8(b). The results are now shown in figures 14 and 15, for 
a = 11.25, 15 and 20. There are two solutions for each k when 01 < a, = 11.25. For any 
a there is a maximum k,,,. Therefore there are two solutions for any k between the 
threshold k, and the maximum k,,,. However, for small enough a only one satisfies 
the energy criterion. For a = 20, both branches have admissible solutions at k = 0 and 
therefore two solitary roll waves, each with different speed and height. Numerically we 
find two solitary waves for any a between 18 and 32. The upper and the lower branches 
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FIGURE 16. Minimum roll wave relations between k,, c,, H, and a for n = 1.0, 0.4, 0.1. 

give respectively higher and smaller values of speed and height for the solitary waves. 
The two branches meet at a,,, = 32. Again, whether these solitary waves are 
physically possible depends on whether the flow is still laminar. This depends on the 
bed slope which in turn determines the Reynolds number of the uniform flow. 

6.3. The minimum roll wave 
So far no experiments are known for spontaneously generated roll waves in power-law 
fluids. We present here the calculated threshold relations for the non-Newtonian cases 
n = 0.4 and 0.1 in figure 16, in which the results for a Newtonian fluid (n = 1) are also 
included for comparison. It can be seen that for each n, k decreases and c increases 
when a increases under the present normalization. The wave height H drops first and 
then increases as a increases. Recall that for the Newtonian case amaz = a, = 3, but 
the maximum 01 that yields solutions satisfying the energy criterion is only slightly 
above 2. 

6.4. Roll wave profiles 
Sample profiles of the free surface h(<), the mean fluid velocity U(<) and the bottom 
stress 7&) will now be presented. The velocity is computed from (5.2), and the bottom 
stress from (3.10). Recall from definitions that a decrease in a reflects an increase in 
either the flow rate or the slope. For a fixed slope, an increase in discharge will increase 
the scales for the depth, the longitudinal length, velocity and the bottom stress. For a 
fixed discharge, an increase in the slope will result in a decrease in the scales for the 
depth, but an increase in the scales for the longitudinal length (except when n = l), 
velocity and the bottom stress. 

First we consider the minimum roll waves. In figure 17, we show the profiles for 
h ( 0 ,  ii((5) and T&) for k = k,  and a = 0, 1 and 5 for n = 0.4. Note that the three a 
values represent respectively a vertical wall and two planes of mild slopes. For example, 
if the Reynolds number of the uniform flow is 100, the slope is given by (3.12), 
tan8 = 4.5'.'/100a, then I9 = in, 0.018, and 3.7 x rad respectively for the above 
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FIGURE 17. Profiles for minimum roll waves k = k, for n = 0.4, and a = 0 (-----), 1 (-), 
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FIGURE 18. Profiles for long roll waves k = 0.1 for n = 0.4, and a = 0 (-----), 1 (-), 

three a values. From figure 17, we observe that a = 0 gives the highest and the shortest 
roll wave where the maximum depth is almost twice that of the uniform flow depth. 
The peak fluid speed is about 30 YO higher than the uniform flow speed. As a increases, 
slope decreases, the normalized wave length increases and the normalized amplitude 
decreases. It is also clear that the peak bottom stresses exceed the uniform flow value 
by only a modest amount (the maximum being 10% for a = 5). Similar results have 
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also been obtained for n = 1 (Newtonian) and n = 0.1 (highly non-Newtonian). In 
general, the flow depth and velocity in these roll waves differ considerably from the 
corresponding uniform flow, but the bottom stress remains much the same. Spatially 
the maximum of r,, occurs near the middle of a period for a = 0, but shifts towards the 
front with larger a. 

We next consider much longer waves for n = 0.4 for the same three values of 
a = 0, 1,5. Though the solitary wave (k = 0) is the strongest theoretically, we avoid the 
extreme case of high speeds and amplitude and consider k = 0.1, as shown in figure 18. 
The highest wave is given by a = 0 (vertical wall). From the velocity profiles the flow 
is seen to have practically vanished when the depth is below a certain value. As a result, 
the fluid appears stagnant along more than half of the stretch in the rear of the period, 
while moving with a tremendous speed in the front half. This behaviour closely 
resembles the bursting mud flows characterized by a period of cessation of flow 
between successive waves, as described by Li et al. (1983). These long roll waves are 
potentially more damaging than the minimum roll waves and the corresponding 
uniform flows. 

7. Conclusions 
Based on the long-wave approximation, a theory of roll waves has been developed 

for non-Newtonian mud flows whose rheological behaviour is modelled by a power 
law. For a fluid of flow index above 1/2/2, there exists no roll wave solutions if the 
corresponding uniform flow is stable according to the linear theory. However for 
n < 1/2/2, i.e. highly non-Newtonian, it is possible for very long waves with large 
amplitudes to exist even when the corresponding uniform flow is stable. An energy 
criterion is introduced to predict the wavelength of the roll wave spontaneously 
developed from unstable infinitesimal disturbances. Such a roll wave has the shortest 
wavelength and lowest amplitude without energy loss across the shock. In the 
Newtonian limit the properties of the minimum roll wave appear to be consistent with 
the available experimental data for a thin sheet of water. In the non-Newtonian cases 
these roll waves have appreciably different velocities and depth profiles, but nearly the 
same bottom stress as the uniform flows with the same discharge. However, for longer 
roll waves the kinematics and dynamics of the flow at the front can be much more 
vigorous than those far behind the front. This is consistent with the field observations 
of bursts, which pose much greater threats in bottom scour. 

We thank the US Office of Naval Research, Ocean Engineering Division (Contract 
NOOO14-89-5-3 128) and National Science Foundation, Natural Hazards Program 
(Grant BCS-9112748) for supporting this research. 

Appendix A. Equations of motion for the long-wave approximation 
We wish to show the conditions under which (2.1k(2.7) are valid. For the power-law 

fluid, we introduce the following normalizations into the full Navier-Stokes equations : 

x = lox* ,  z = hoz*, p =pu,p , (A l a )  
u = i7, u*, v = i7,(ho/l,) v*, t = (lo/i7,) t*, (A 1b) 

a *  
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where h,, I,, and tr, are the characteristic depth, longitudinal length and longitudinal 
velocity scales respectively. The dimensionless conservation laws of mass and 
momentum are 

c?u* 2v* -+- = 0 ,  
c?x* 2z* 

where Re is the Reynolds number defined by (3.13), 

Fr = ci/(gh,) 

and 

The last equality is obtained by making use of (3.6), (3.1 1) and (3.12). The boundary 
conditions are 

u* = u* = 0 at z* = 0, (A 7) 

e ah* e 
Re rzx ax* Re 

-_ --+-rzz-p* = 0 at z* = h*. 

For long waves, we assume e 4 1. Furthermore, we allow high-speed flows which 
satisfy 

(A 11) 

and l /Ree  - O(1). (A 12) 

Fr 3 O( l), sin O/(Fr e) - O( 1) 

Upon expanding the unknowns u*, v* and p* in powers of e, one can readily obtain 
(2.1)-(2.6) as the leading-order equations and boundary conditions in physical 
quantities. Note that the approximate equations for small Reynolds number Re = O( 1) 
are a subset of (2.1) and (2.2) with an O(2) error. 

Appendix B. Stability criterion for low Reynolds number 

uniform flow of a power-law fluid where Re = O(1). From (A 3) and (A 4), we get 
In this Appendix we shall deduce the linearized stability criterion for a steady 

(B 1) at C?X az Fr ax 
(du au au cos8ah) 

€ -+u-+v-+-- 

On expanding the velocity components in powers of E :  

u = u, + €U1 + . . . , v = 21, + €?I1 + . . . (B 2) 
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we obtain from (A 2) and (B 1) the velocity profiles and the depth-averaged velocities: 
O( 1) : 
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O(e) : 

Re Resin0 v c o s 0  
__ h,(hq - (h  - z ) F )  + O(e), -__ ___ 

l + n (  Fr ) Fr 

Re sin 0 l+Ln Re Re sin 0 9 cos B Ah+--- __ h, h y  + O(t). 
2Re 

" = ( 1 + 2 ~ ~ ) ( 2 + 3 n ) ( 7 )  1+2n( Fr ) Fr 

(B 6) 
Substituting go and GI into the continuity equation 

ah a(u,,h) a(u h) 
at ax ax 
- + + + c s + o ( e 2 )  = 0, 

we get 

2Re Resin@ ?2 3+3n 3 + 3 n h z h p  
+'{( 1 + 2n) (2  + 3n) (7) (".. h7 +- n 

h.: h-?i- + O ( 2 )  = 0. +2n n i+2n(  Fr ) x(hxxhT+-- Re Re sin 0 cos B -__ ___ 

The primary flow is steady and uniform and its depth and mean velocity are chosen 
as the characteristic depth and longitudinal velocity scales so that h = 1 and go = 1 
and from (B 4), 

(B 9) Fr 

To study instabilities, we perturb the primary flow: 

h =  1+H (B 10) 
where H = O h )  4 1 .  Retaining only linear terms of the perturbations and making use 
of (B 9), we get from (B 8) 

H,, + O@e2) = 0. (B 1 1 )  
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Further assume normal mode disturbances 
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H = Re (Hexp [ik(x- ct)]) 
we obtain from (B 11) 

(B 13) 
2( 1 + 2n)' cos 8 k2 + O(e2) = 0. 1 +2n 

If we expand c = co+ecl+ ..., we get from (B 13) 

1 +2n 
C" = -, n 

(B 15) 

Therefore the phase speed for k - 0 is (1 +2n)/n which is the same as (4.15) for high 
Reynolds number, while the leading order of the growth rate of the disturbances is 

ekIm(cl) = e- 

Therefore the flow will be linearly stable when k > 0 and 

cos0 1+2n 1+2n 
->7+ Fr n n(2+3n) 

or, upon using (B 9), 

((1 +2n)/n)ncot8 
[( 1 + 2n)/n2] + (1 + 2n)/[n(2 + 3n)l' 

Re < 

For Newtonian fluid, (B 17) reduces to Re < ;cot 8 as has been obtained on solving the 
Orr-Sommerfeld equation by Benjamin (1957) and Yih (1963). Note that (B 17) differs 
from the criterion (4.11) for high Reynolds number by the presence of the second term 
(1 + 2n)/[n(2 + 3n)] in the denominator. The ratio of the second term to the first term in 
the denominator of (B 17) is n/(2 + 3n) which is for the Newtonian case and becomes 
smaller when n decreases. In other words, when the fluid is more shear-thinning, the 
stability criterion (4.1 1) for high Re, obtained with the crude velocity profile (2.9), 
becomes closer to the criterion (B 17) for low Re with the more accurate profiles (B 3) 
and (B 5). 

Appendix C. The critical flow condition 
In this Appendix we shall prove the necessary existence of the critical section and the 

monotonicity of the surface slope between successive shocks. 
It is well-known in hydraulics that a supercritical flow changes to a subcritical flow 

only through a hydraulic jump. Dressler (1949) showed that in the profile of roll waves 
in a turbulent flow in an open-channel, there is a critical section, in the moving 
coordinate system, such that 

in physical variables. Within each wavelength, there is a transition from a supercritical 
(Fr > 1) to a subcritical (Fr < 1) state. Mathematically, the critical condition (C 1) also 

Fr' = (U-c)'/gh = 1 (C 1) 
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corresponds to the vanishing of the denominator of a profile equation similar to (5.3). 
Dressler further showed that the numerator of this profile equation must also vanish 
at the critical section where the profile maintains a finite steepness. We shall now 
establish the necessity of the critical flow section from the mathematical view point. 

Let us first rewrite the two conservation laws (3.8) and (3.9) in a matrix form: 

where 

and 

wi = (;) 

0 
yi = (A(h)  hk') 

The eigenvalues of D, are 

A' = /3@&,!?(/3-l)ii2+ah]~. (C 6) 

The discriminant in (C 6) is always positive, so the eigenvalues are real and distinct and 
the system is hyperbolic, as expected. Accordingly there exist two families of 
characteristics with local slopes 

C' : (dx/dt)' = / 3 ~ &  [p(/3- 1) Uz + ah]:. (C 7) 

Shocks can result from the intersections of adjacent characteristics of the C+ family. 
Consider a single wavelength of wave profile whose depth is h, at the left end and h, 
at the right end. By (5.21) that q > 0, whenever h increases, @will increase and from 
(C 7) so will the slope of the C+ characteristics. The opposite will be true when h 
decreases. Therefore if part of the wavelength has a decreasing profile, the C+ 
characteristics over this part will intersect each other as time goes on and a shock will 
be formed. This contradicts the smoothness required in the interior of the profile. 
Consequently the wave profile must be monotonically increasing from h, to h, and the 
slope of the C+ characteristics will also increase monotonically from the left end to the 
right end of the profile. The discontinuities between individual profiles will remain 
stationary and 

(C 8) 

The above inequality implies the existence of a critical characteristic Cz(h,, @J at each 
wavelength (where h, < h, < h, and @, < ii, < ZI,) such that 

(dxldt): < c < (dx/dt)i. 

(dx/dt): = C .  (C 9) 
The critical characteristic must be a straight line and separates other C+ characteristics 
into two groups: 

(i) those on the left side of C: (with h,  < h < h,, ill < @c iic) 

(dx/dt)+ < c; (C 10) 

(dx/dt)+ > c. (C 11) 

(ii) those on the right side of C: (with h, < h < h,, U, < U < u,) 
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Furthermore we may show that all characteristics in the C- family are advancing more 
slowly than the shock. Since 

pu- [p(p- 1) d + ah]; < pu- [pCp- 1) a2];(because a 2 0) 
< pu- [(p- 1)2 u"]; 
= U  

but U < C  

it follows that 
or (dx/dt)- < c for all C- characteristics. 

pU-[p(p- l)u2+ah]+ < c 

Thus, relative to a shock, a disturbance to the flow will propagate only downstream if 
it is initially superimposed on the left side of the critical section, but will propagate both 
downstream and upstream if it is initially on the right side of the critical section. In 
hydraulics, flows exhibiting these two kinds of behaviour are classified as supercritical 
and subcritical respectively. More specifically, we obtain, by substituting (C 7) into 
(C 9), (C 10) and (C l l ) ,  

supercritical 
PU+ [pu- 1) U'3 +ah]; = c o critical (C 13) (1 i subcritical. 

The usual definitions for supercritical, critical and subcritical flows in hydraulics may 
be recovered as a particular case of (C 13). Let the velocity profile be uniform, or 
p = 1, then the three conditions in (C 13) are 

supercritical li: i supercritical. 

In physical variables, they become the familiar definitions 

(ah)% = c - U -  critical 

supercritical 

subcritical. 
1(; c--u = Fr- { critical 

(gh cos 0)x 

Now the flow is supercritical at (Al, u~), critical at (h,, ti,) and subcritical at (A2, uJ, 

(C 14a) 
(C 14b) 
(C 14c) 

so 
pis, + [pw- 1) 6; +ah,]$ < c,  
pu, + [p(p - 1) u: + ah,]; = c, 

p U z  + [pw- 1) g + ah,]; > c. 

On substituting u from (5.2), (C 14b) can be written as 

B(h,) = Cp-1)Cz-pq2h;2+ahc = 0. (C 15) 
Hence h, must be the only positive root of B(h) = 0. As a check, we may alternatively 
deduce the conditions (C 14a) and (C 14c) directly from the momentum conservation 
equation (5.13). It can further be shown from (5.13) and (C 15) that when either h, or 
h, is equal to h,, the other one must also be equal to h,, implying a uniform flow. 

We next prove that A(h) also vanishes h = h,. A left eigenvector associated with A+ 
is 

(z;,z;) = (U- 1)2h- l+a ,  (P-l)U+[pCp- 1)2+ah)]9.  (C 16) 
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Multiplying the system (C 2) by 1: will give 

dh du 
dt dt 

1;-1-1;- = 1; A(h)h-' along Cf characteristics. 
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In particular, the quantities h, and U, along the critical C+ characteristic are invariant 
with time. Therefore 

dh du z = d t = o  along the C: characteristic, 

which implies that the right-hand side of (C 17) must vanish at h = h, and u = uC: 

/:(A,, Ge) A(h,) hi1 = 0. 

Since li(he7 u,) is always positive, it follows that 

A(h,) = h,-(ch,1-qh,2)" = 0. (C 18) 

Thus both A(h) and B(h) have to vanish at the critical section h = h,. Consequently, 
A(h) = 0 will have two positive roots by virtue of the conditions that q > 0 and A(h) 
vanishes at h = h,. It can be checked that h = he is the larger root by examining the 
profile slope at this section, by L'Hospital's rule, 

. dh A'(h,) lim- = ~ 

h+h, d5 B'(h,). 

As the profile slope must be positive and B'(h) is always greater than 0, it is necessary 
that 

or h, is the larger positive root of A(h) = 0. Clearly the surface slope A(h)/B(h) is 
always positive as long as h is greater than the smaller root h,. 

A'(h,) > 0 (C 20) 

Appendix D. Inequalities among he, ( h ) ,  h, 
Note from figure 6 that for any h > h, 

A(h) ,< 0 if and only if h, 2 h > ha, 
A(h) > 0 if and only if h > h,. 

By definition, h = ( h )  is a section within a profile, while h, is so from Appendix C. We 
now wish to show that h = 1 is also an interior section of a profile by proving that 

h,> 1 if ( h ) <  1 (D 3) 

and h, < 1 if ( h )  > 1. (D 4) 

That is, either h, > 1 > ( h )  or h, < 1 < ( h )  must be true. From (5.3) and (5.26), it 
is readily seen that 

A ( ( h ) )  = ( h )  - (h)-2", 
A(1) = 1 -(c-q)lZ. 

(D 5 )  
(D 6) 

Now we consider two complementary cases. 
(i) If ( h )  < 1 then c-q  2 1 from (5.26). It follows from (D 5 )  and (D 6) that 

A ( ( h ) )  ,< 0, 4 1 )  < 0 
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and therefore from (D l), 

which proves (D 3) .  
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h, 3 1 3 ( h )  > ha 

(ii) If ( h )  > 1 then c-q  < 1 from (5.26). It follows from (D 5 )  that 

A ( @ ) )  > 0. 

( h )  > h, Hence, by (D 2), 

which implies, by (5.25) and (5.26), 

(1 +q)hF1 > h y - q h ; '  

or h, < 1 which is the same as (D 4). 
Only in the special case of uniform flow will the equality sign in case (i) hold i.e. 

h = 1 = ( h ) .  Note in particular that the inequality ( h )  + 1 does not violate mass 
conservation, since both the averaged depth of the roll wave (= ( A ) )  and the depth of 
the uniform flow (= 1) are normalized for the same discharge (Q). Note also that 
Ishihara et al. (1954) assumed for a Newtonian layer that the flow quantities at the 
critical section are always equal to those of the corresponding uniform flow; this is 
incorrect. 
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